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A CAD-Oriented Method for Noise Figure
Computation of Two-Ports with Any
Internal Topology

JANUSZ A. DOBROWOLSKI

Abstract — A method for computer-aided noise analysis and an algorithm
for the noise parameter computation of two-ports with any internal topol-
ogy are discussed. The approach is applicable to circuits which are com-
posed of any number of passive linear multiports and active linear two-port
devices. The noise analysis is based on the scattering matrix description
for circuit elements and wave representation for noise.

. INTRODUCTION

HE THEORY of noisy, linear cascaded two-ports is

well established and has provided the basis for opti-
mizing the performance of low-noise amplifiers. This the-
ory has been based on the classical work by Rothe and
Dabhlke [1], who use an impedance or admittance represen-
tation of noise parameters. The representation of the noise
of microwave networks in terms of power waves is also
used very effectively [2]-[4]. Transformation formulas for
the four noise parameters given in [5] are useful for noise
analysis of circuits that may be represented by series,
parallel, and cascaded connections of two-ports. The
method for noise analysis proposed in [6] has the same
restrictions. The two-port which is to be analyzed is viewed
as an interconnection of two-ports only.

Expressions are also known for the noise figure of
cascaded structures with series or parallel feedback {7], [8]
and for distributed amplifiers [9], [10]. These relations are
only valid for preselected topologies. They cannot be im-
plemented into general-purpose computer programs for
noise analysis of circuits with any topology.

It is the purpose of this paper to present a computer-
aided noise analysis method for linear two-ports with
absolutely general internal topology.

Instead of an admittance matrix and a current descrip-
tion for circuits and noise which are used in the method
described in [11] and [12], a scattering matrix and a wave
representation are presented. At microwave frequencies, a
treatment of noise in terms of waves is more attractive.
The ingoing and outgoing noise waves 4, and B, are given
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where V, and I, are the noise voltage and the noise current
flowing into the ith port of a circuit and Z, is the
reference impedance of the port.

Equation (1) is identical to the standard definition of
power waves for sinusoidal signals [4].

In the noise analysis of circuits containing multiports,
one noise wave source is placed at each circuit port. These
noise wave sources represent noise generated in each
element (multiport) of the circuit. The method makes it
possible to effectively compute the noise figure and four
noise parameters of the overall circuit. The information
about minimum noise figure and noise-matching condi-
tions is an important advantage of the approach. Thanks
to the connection scattering matrix formalism used for a
circuit description, the noise analysis method presented is
more compatible with CAD software [12]-{16] than the
method described in [17].

II. METHOD OF ANALYSIS

In the analysis, it is assumed that each linear noisy
network may be represented as the interconnection of
lossy passive multiports which introduce only thermal noise
and noisy active two-ports. Each linear element in the
circuit may be represented by its noiseless equivalent hav-
ing the same scattering matrix S as the original network.
As is shown in Fig. 1, noise generated in an element is

A,

o NOISELESS
MULTIPORT

ni?,m

Wave representation of noise in a multiport.

Fig. 1.
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Fig. 2. Constraints imposed by connections between adjacent ports.

represented by mutually correlated noise wave sources, one
source at each port.

In matrix notation, a set of linear equations which relate
complex amplitudes of noise waves at ports of a circuit
element has the from [18]

B = g4k 4 Bjek) (2)
where S§ is the scattering matrix of the kth element,
A% and B® are vectors of incident and reflected noise
waves at its ports, and B{ is a vector of mutually
correlated noise wave sources which represent noise gener-
ated in the element. The noise waves from these sources
radiate out of the ports and they do not depend on
incident noise waves 4%

Fig. 2 presents a general circuit composed of m elements
(multiports) connected together by their ports.

Considering all m elements of the circuit, we have a set
of linear equations whose matrix form is

B=S4+B, (3)
where
_ _ - _ B T
A(l) B(l) Blsll)
AD B® By
A=]| - B=| - B,=| = |
A(.k) B‘(k) B}s[k)
| A0 | | B | B}ém)J
and
[ ™ ¢ T
0 §? 0
s=le se 0| ©
| 0 P ¢ S (m) ]

The connections between the m elements impose con-
straints on the vectors 4 and B which can be represented
as a matrix equation.

B=T4 (6)
where T is the connection matrix. In fact, incident and
reflected noise waves at ports i and j connected together
must satisfy the following relation (see Fig. 2):

2yRe(Z,)Re(Z,) || a,

Z-Zr
Z-Zr a,

2yRe(Z,)Re(Z))
(7)

where Z, and Z, are the reference impedances of the
connected ports. The above relation defines elements of
the connection matrix T’ corresponding to a pair of the
connected ports.
It is assumed in the analysis that for all pairs of the
connected ports
Z=2r. (8)

This means that all port connections in the analyzed
circuit are nonreflecting; that is, a,= b, and a,=b, In
such a case the elements of the connection matrix I" are all
zero except the 1’s in the entries corresponding to pairs of
adjacent ports.

After elimination of the vector B from (3) and (6) we get

WA =B, 9)
where

W=I-S (10)
is the connection scattering matrix of the analyzed circuit
13].
[ I]Jsing (9) we are able to get a correlation matrix of the
incident noise waves in all circuit ports. Given that

A=W B, (11)

then
A4 =w B B w ) =w-lc(ow ) (12
where the bars indicate the statistical averages and the

daggers the complex conjugate transpose of the vectors
and matrices. In (12)

C=B,B} (13)
is the correlation matrix of the noise wave sources repre-
senting noise generated in all circuit elements.

Because the noise wave sources B of an (ith) element
are uncorrelated with those of any other circuit element,

the correlation matrix C is a block diagonal matrix of the
form

C=B,B},
ﬁc(l) 0 0 W
0 C®
- c®
' 0
) . . . e 0 COM |

(14)
in which C®,C®,. .. €™ are correlation matrices of the
noise wave sources of individual circuit elements.



DOBROWOLSKI: CAD-ORIENTED METHOD FOR NOISE FIGURE COMPUTATION

A. Active Two-Ports

Noise generated in an active two-port is represented by
the complex waves B,, and By, radiating from both
ports. Their 2X 2 correlation matrix

[BMB;A

By, B

C=B,B}-

(15)

BmBﬁz]
BN2Bﬁ2

may be calculated from the following relation:
| _ 2 2
kTAf [Em+(N Fem)lrol ]islll
[T +2NRe(TL,Sy;)+N—F,,(1-|T,))
’ [Fem+(N—Fem)lrolz]S1>§S21+NroS21

[F,,.+(N—F,,)To?] $1,85% + NI xS
[Fem + (N - F;:m)lrol?'] |S21I2

} (16)

where
N=4R,-G, (17)
and
F,, = minimum excess noise figure,
I, = Rel,+ jImT,, optimum reflection coeffi-
cient of the signal source,

R, = noise resistance,
G, = real part of the optimum source admittance,
S, (i, j =1,2) scattering parameters of a two-port.

F,,. T,=Rel,+ jImI,, and N are a set of noise

parameters which must be obtained through measurements
[19]-[21]. The correlation matrix C may also be expressed
by any other set of active two-port noise parameters, for
example 7, R, X,, Ry or T,,,G,, B,, G [6], [22].

B. Passive Multiports

Lossy passive multiports generate only thermal noise.
It is represented again by the complex waves By,
-, By,» where n is the number of ports in a multi-
port. The n X n correlation matrix C of these noise sources
is given by [23]

BNZ’ .o

c=[ByBL|. ij=12..n

=KkTAf(I—-SST) (18)

where
k Boltzmann’s constant,
T physical temperature of the multiport,
I identity matrix,
S scattering matrix of the multiport.

The quantity (I —SS7) is called the noise distribution
matrix because it describes how the thermal noise power
generated in the multiport is distributed over its ports.

It should be mentioned here that, in general, passive
elements in a microwave circuit can have different physical
temperatures.
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III. AN ALGORITHM FOR THE NOISE FIGURE
COMPUTATION OF A GENERAL MULTIPORT CIRCUIT

To compute the noise figure, we will assume that the
output port load impedance is noise free. Under such a
condition, the noise figure of the circuit at frequency f is
given by [24]

P 1n
F=1+—2= (19)

NS
where

P,.. (available) active noise power at the output port
of the circuit arising from the noise sources act-
ing within the circuit,

(available) active noise power at the output port
of the circuit arising from the equivalent thermal
noise source of the input port termination.

PNS

If r is the number of the load impedance port of the
analyzed circuit, then the active noise power at the output
port is

Py=(44%) (1-15,1%)

rr

(20)

where (44%),, is the rth diagonal element of the correla-
tion matrix 447,

z, - Z*
Srr =~
Z,+Z,

(21)

is the reflection coefficient of the output port load, Z; is
the load impedance, and Z, is the reference impedance of
the load impedance port. Noise powers Py, and Py can
therefore be computed using the simple matrix multiplica-
tions described by (12).

The following steps carried out by the numerical algo-
rithm are as follows:

a) The connection scattering matrix W of the analyzed
circuit it built and computed.

b) The noise correlation matrices of the individual
passive and active circuit elements are found. The
noise correlation matrix C defined by (13) is built
and computed. Two diagonal elements of C relative
to ports belonging to the signal source impedance
and to the load impedance are set to zero.

p r

c® : :

c®
C=p|...........00.
c®

T o(m)
L ™|

p: signal generator port number

r: load impedance port number.
Both zeros represent no noise power generated by
signal source and load impedances.
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¢) Relative to the load impedance port diagonal ele-
ment of the matrix 44" is computed using (12). A
value of this element multiplied by (1— |S,,|?) equals
P Nint* '

d) The noise correlation matrix C defined by (14) is
built and computed once again, this time for the
case where noise in the circuit originates from the
equivalent thermal noise source of the input port
termination only. It means that all elements of the
matrix C must be equal to zero, except an element
corresponding to the input port termination. Ac-
cording to (18) this element is

C,,=kT(1-1S,,1%) (22)
where
5 %74 (23)
o Z+Z,

is the reflection coefficient of the input port termination
(signal source port). Z, is the impedance
of the input port termination (signal source impedance),
and Z, is the reference impedance of the signal source

port:

0

p: signal source port number.

e) Relative to the load impedance port diagonal ele-
ment of the matrix A4" is computed using (12). This
time the value of this element multiplied by (1—
|S,,|%) equals Pys.

f) The noise figure F is found from (19) using results
obtained in steps ¢ and e.

Note that the matrix W in (12) is the cohnection scatter-
ing matrix of the analyzed circuit, so that a conventional
circiiit analysis may be carried out together with the noise
figure calculation. This allows a simultaneous optimization
of an absolutely general amplifier topology with respect to
both noisc figure and any of the conventional circuit
functions. The inverse matrices W™! and (W) of the
connection scattering matrix W can be computed very
effectively using sparse matrix technique [14], [15].

IV. AN ALGORITHM FOR COMPUTATION OF THE
FOUR NOISE PARAMETERS OF A GENERAL
MULTIPORT CIRCUIT

To compute the four noise parameters related to the
input and output ports of a general multiport circuit, we
assume that the reflection coefficient S,, of the input port
termination (equation (23)) and the reflection coefficient

REFERENCE
IIMPEDANCE
SIGNAL
B T
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Dl (A U

2~
S T2+,

Fig. 3. Outgoing noise waves B{Y and B3 at the input and output
ports of the overall circuit.

S,, of the output port load (equation (21)) are both zero.
We assume also that both these terminations are noise
free. Under such assumptions the noise waves at the input
and output ports can be computed using (12).

The actual steps carried out by the numerical algorithm
are listed below:

a) The connection scattering matrix W of the analyzed
circuit is built and computed. Diagonal elements
W,,=—S8,, and W,,=—S,_ of W must be set to
zero ( p is the signal source port number, r the load
impedance port number).

b) The noise correlation matrices of the.individual
passive and active circuit elements are found. The
noise correlation matrix C defined by (13) is built
and computed. Two diagonal elements of the matrix
C relative to ports belonging to the signal source
impedance and to the load impedance are set to
Zero.

¢) The three elements (:471_*) pr

(or (ﬁ)m) of the matrix 44" are computed using
(12).

The correlation matrix of the outgoing noise waves B{Y
and B{J at the input and output poits of the overall
network is given by (see Fig. 3)

cw | CS)]: B Bii*
KeEe 8 I FIONIon

pp° (AA*)’rr’ and (AAT)

BB

B B

|G, G, 4

| (447);, (447),
Once the elements of the noise correlation matrix C® are

known, the noise figure F can be determined. The noise
figure is given by

2

W S3 ST,
ot sy + o8 +2re
F=1+
kToAf—lSﬁ)‘i—(l—lflz)
1-SPL,° ’
(25)

where S{P and S{ are the scattering parameters of the
overall network, and
Z, -7

=Z%z, 26)
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Fig. 4. Equivalent circuit of a multiport network with noiseless ele-
ments and noise wave sources at each port.

is the reflection coefficient of the signal source impedance
with respect to the input port reference impedance.

Using the C” matrix elements, any set of noise parame-
ters of the overall network may be calculated, for example

F,, T, and N:
1 1-1891 S{p=*
F_=—|CHO——————CH +2Re{ CY +N
em™= 7122 lsz(f)lz 11 €1t SZ(It)*
(27)
() *
2 Cl(?*—l————C(’)fL
N0 22 IS(t)|2
- 21 21 28
LIS Sip* =
(1).____ (1 _ (1)
59 |S2({)|2 +Cy 2Re{C12 Sz({)*}+N
SLEIsER s
N={|C{ —_|Sz({)|2 +CH —2Re{ CH——— SO+
S(t)* 02
4C(t)*S(t) sz lS(t)|2 (29)

This time the noise figure of the overall circuit is given by
I, - T,
—ILP) (=157

The overall scattering parameters S{’ and S{ used in
(25) and (27)—(29) can be computed from the equation

s (31)

where W is the connection scattering matrix given by (10),
a is a vector of incident power waves, and b, is a vector of
the impressed power waves of the independent sinusoidal
signal sources {13]-[16].

Connecting the input port of an analyzed multiport
circuit (see Fig. 4) to a matched signal source (S,,=0)
with the impressed wave b, =1 and the output port to a

F=1+Fem+N( (30)
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matched load (S,, = 0), we get a case in which the overall
scattering parameters S and S{» coincide with the waves
a, and a,:

[
Sl(l) =a,

S(’)—a, 1

The condition ;=1 is imposed by the signal source
connected to the input port.

V. CONCLUSION

The noise analysis concept presented in this paper is
applicable to multiport circuits with any topology. There-
fore it is applicable to most networks occurring in mi-
crowave practice. The set of noise parameters which can be
calculated by the method includes the noise figure, the
correlation matrix of the outgoing noise waves at the input
and output ports, or the minimum noise figure, the opti-
mum signal source reflection coefficient, and the parame-
ter N.
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