

A CAD-Oriented Method for Noise Figure Computation of Two-Ports with Any Internal Topology

JANUSZ A. DOBROWOLSKI

Abstract—A method for computer-aided noise analysis and an algorithm for the noise parameter computation of two-ports with any internal topology are discussed. The approach is applicable to circuits which are composed of any number of passive linear multiports and active linear two-port devices. The noise analysis is based on the scattering matrix description for circuit elements and wave representation for noise.

I. INTRODUCTION

THE THEORY of noisy, linear cascaded two-ports is well established and has provided the basis for optimizing the performance of low-noise amplifiers. This theory has been based on the classical work by Rothe and Dahlke [1], who use an impedance or admittance representation of noise parameters. The representation of the noise of microwave networks in terms of power waves is also used very effectively [2]–[4]. Transformation formulas for the four noise parameters given in [5] are useful for noise analysis of circuits that may be represented by series, parallel, and cascaded connections of two-ports. The method for noise analysis proposed in [6] has the same restrictions. The two-port which is to be analyzed is viewed as an interconnection of two-ports only.

Expressions are also known for the noise figure of cascaded structures with series or parallel feedback [7], [8] and for distributed amplifiers [9], [10]. These relations are only valid for preselected topologies. They cannot be implemented into general-purpose computer programs for noise analysis of circuits with any topology.

It is the purpose of this paper to present a computer-aided noise analysis method for linear two-ports with absolutely general internal topology.

Instead of an admittance matrix and a current description for circuits and noise which are used in the method described in [11] and [12], a scattering matrix and a wave representation are presented. At microwave frequencies, a treatment of noise in terms of waves is more attractive. The ingoing and outgoing noise waves A_i and B_i are given

Manuscript received May 28, 1987; revised May 20, 1988. This work was supported by the Ministry of Science and Higher Education of Poland under Program CPBP 02.14.

The author is with the Institute of Electronics Fundamentals, Warsaw University of Technology, 00-665 Warsaw, Poland.

IEEE Log Number 8824246.

by

$$A_i = \frac{V_i + Z_i I_i}{2\sqrt{\text{Re}(Z_i)}} \quad B_i = \frac{V_i - Z_i^* I_i}{2\sqrt{\text{Re}(Z_i)}} \quad (1)$$

where V_i and I_i are the noise voltage and the noise current flowing into the i th port of a circuit and Z_i is the reference impedance of the port.

Equation (1) is identical to the standard definition of power waves for sinusoidal signals [4].

In the noise analysis of circuits containing multiports, one noise wave source is placed at each circuit port. These noise wave sources represent noise generated in each element (multiport) of the circuit. The method makes it possible to effectively compute the noise figure and four noise parameters of the overall circuit. The information about minimum noise figure and noise-matching conditions is an important advantage of the approach. Thanks to the connection scattering matrix formalism used for a circuit description, the noise analysis method presented is more compatible with CAD software [12]–[16] than the method described in [17].

II. METHOD OF ANALYSIS

In the analysis, it is assumed that each linear noisy network may be represented as the interconnection of lossy passive multiports which introduce only thermal noise and noisy active two-ports. Each linear element in the circuit may be represented by its noiseless equivalent having the same scattering matrix S as the original network. As is shown in Fig. 1, noise generated in an element is

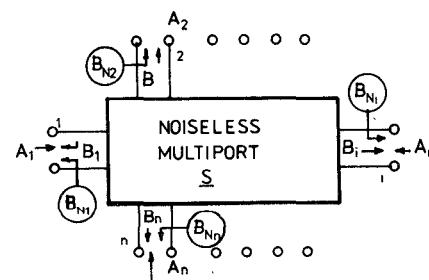


Fig. 1. Wave representation of noise in a multiport.

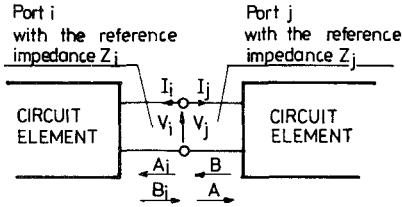


Fig. 2. Constraints imposed by connections between adjacent ports.

represented by mutually correlated noise wave sources, one source at each port.

In matrix notation, a set of linear equations which relate complex amplitudes of noise waves at ports of a circuit element has the form [18]

$$\mathbf{B}^{(k)} = \mathbf{S}^{(k)} \mathbf{A}^{(k)} + \mathbf{B}_N^{(k)} \quad (2)$$

where $\mathbf{S}^{(k)}$ is the scattering matrix of the k th element, $\mathbf{A}^{(k)}$ and $\mathbf{B}^{(k)}$ are vectors of incident and reflected noise waves at its ports, and $\mathbf{B}_N^{(k)}$ is a vector of mutually correlated noise wave sources which represent noise generated in the element. The noise waves from these sources radiate out of the ports and they do not depend on incident noise waves $\mathbf{A}^{(k)}$.

Fig. 2 presents a general circuit composed of m elements (multiports) connected together by their ports.

Considering all m elements of the circuit, we have a set of linear equations whose matrix form is

$$\mathbf{B} = \mathbf{S}\mathbf{A} + \mathbf{B}_N \quad (3)$$

where

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}^{(1)} \\ \mathbf{A}^{(2)} \\ \vdots \\ \mathbf{A}^{(k)} \\ \vdots \\ \mathbf{A}^{(m)} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}^{(1)} \\ \mathbf{B}^{(2)} \\ \vdots \\ \mathbf{B}^{(k)} \\ \vdots \\ \mathbf{B}^{(m)} \end{bmatrix} \quad \mathbf{B}_N = \begin{bmatrix} \mathbf{B}_N^{(1)} \\ \mathbf{B}_N^{(2)} \\ \vdots \\ \mathbf{B}_N^{(k)} \\ \vdots \\ \mathbf{B}_N^{(m)} \end{bmatrix} \quad (4)$$

and

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}^{(1)} & \mathbf{0} & \dots & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{S}^{(2)} & & & \mathbf{0} \\ \vdots & \ddots & \ddots & & \vdots \\ \mathbf{0} & & \mathbf{S}^{(k)} & & \mathbf{0} \\ \vdots & & & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \dots & \mathbf{S}^{(m)} \end{bmatrix} \quad (5)$$

The connections between the m elements impose constraints on the vectors \mathbf{A} and \mathbf{B} which can be represented as a matrix equation.

$$\mathbf{B} = \Gamma \mathbf{A} \quad (6)$$

where Γ is the connection matrix. In fact, incident and reflected noise waves at ports i and j connected together must satisfy the following relation (see Fig. 2):

$$\begin{bmatrix} b_i \\ b_j \end{bmatrix} = \frac{1}{Z_i + Z_j} \cdot \begin{bmatrix} Z_j - Z_i^* & 2\sqrt{\text{Re}(Z_i)\text{Re}(Z_j)} \\ 2\sqrt{\text{Re}(Z_i)\text{Re}(Z_j)} & Z_i - Z_j^* \end{bmatrix} \begin{bmatrix} a_i \\ a_j \end{bmatrix} \quad (7)$$

where Z_i and Z_j are the reference impedances of the connected ports. The above relation defines elements of the connection matrix Γ corresponding to a pair of the connected ports.

It is assumed in the analysis that for all pairs of the connected ports

$$Z_i = Z_j^*. \quad (8)$$

This means that all port connections in the analyzed circuit are nonreflecting; that is, $a_i = b_j$ and $a_j = b_i$. In such a case the elements of the connection matrix Γ are all zero except the 1's in the entries corresponding to pairs of adjacent ports.

After elimination of the vector \mathbf{B} from (3) and (6) we get

$$\mathbf{W}\mathbf{A} = \mathbf{B}_N \quad (9)$$

where

$$\mathbf{W} = \Gamma - \mathbf{S} \quad (10)$$

is the connection scattering matrix of the analyzed circuit [13].

Using (9) we are able to get a correlation matrix of the incident noise waves in all circuit ports. Given that

$$\mathbf{A} = \mathbf{W}^{-1} \mathbf{B}_N \quad (11)$$

then

$$\overline{\mathbf{A}\mathbf{A}^\dagger} = \mathbf{W}^{-1} \overline{\mathbf{B}_N \mathbf{B}_N^\dagger} (\mathbf{W}^{-1})^\dagger = \mathbf{W}^{-1} \mathbf{C} (\mathbf{W}^{-1})^\dagger \quad (12)$$

where the bars indicate the statistical averages and the daggers the complex conjugate transpose of the vectors and matrices. In (12)

$$\mathbf{C} = \overline{\mathbf{B}_N \mathbf{B}_N^\dagger} \quad (13)$$

is the correlation matrix of the noise wave sources representing noise generated in all circuit elements.

Because the noise wave sources $\mathbf{B}_N^{(i)}$ of an (i th) element are uncorrelated with those of any other circuit element, the correlation matrix \mathbf{C} is a block diagonal matrix of the form

$$\begin{aligned} \mathbf{C} &= \overline{\mathbf{B}_N \mathbf{B}_N^\dagger} \\ &= \begin{bmatrix} \mathbf{C}^{(1)} & \mathbf{0} & \dots & \dots & \dots & \dots & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^{(2)} & & & & & & \vdots \\ \vdots & & \ddots & & & & & \vdots \\ & & & \mathbf{C}^{(k)} & & & & \mathbf{0} \\ \vdots & & & & \ddots & & & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \dots & \dots & & & \mathbf{0} & \mathbf{C}^{(m)} \end{bmatrix} \end{aligned} \quad (14)$$

in which $\mathbf{C}^{(1)}, \mathbf{C}^{(2)}, \dots, \mathbf{C}^{(m)}$ are correlation matrices of the noise wave sources of individual circuit elements.

- c) Relative to the load impedance port diagonal element of the matrix \mathbf{AA}^\dagger is computed using (12). A value of this element multiplied by $(1 - |S_{rr}|^2)$ equals $P_{N\text{int}}$.
- d) The noise correlation matrix \mathbf{C} defined by (14) is built and computed once again, this time for the case where noise in the circuit originates from the equivalent thermal noise source of the input port termination only. It means that all elements of the matrix \mathbf{C} must be equal to zero, except an element corresponding to the input port termination. According to (18) this element is

$$C_{pp} = kT(1 - |S_{pp}|^2) \quad (22)$$

where

$$S_{pp} = \frac{Z_s - Z_p^*}{Z_s + Z_p} \quad (23)$$

is the reflection coefficient of the input port termination (signal source port). Z_s is the impedance of the input port termination (signal source impedance), and Z_p is the reference impedance of the signal source port:

$$\mathbf{C} = \begin{matrix} p \\ \begin{bmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & \ddots & & \\ & & & & C_{pp} & \\ & & & & & \ddots \\ & & & & & & 0 \\ & & & & & & & \ddots \\ & & & & & & & & 0 \\ & & & & & & & & & 0 \end{bmatrix} \end{matrix}$$

p : signal source port number.

- e) Relative to the load impedance port diagonal element of the matrix \mathbf{AA}^\dagger is computed using (12). This time the value of this element multiplied by $(1 - |S_{rr}|^2)$ equals P_{NS} .
- f) The noise figure F is found from (19) using results obtained in steps c and e.

Note that the matrix \mathbf{W} in (12) is the connection scattering matrix of the analyzed circuit, so that a conventional circuit analysis may be carried out together with the noise figure calculation. This allows a simultaneous optimization of an absolutely general amplifier topology with respect to both noise figure and any of the conventional circuit functions. The inverse matrices \mathbf{W}^{-1} and $(\mathbf{W}^{-1})^\dagger$ of the connection scattering matrix \mathbf{W} can be computed very effectively using sparse matrix technique [14], [15].

IV. AN ALGORITHM FOR COMPUTATION OF THE FOUR NOISE PARAMETERS OF A GENERAL MULTIPORT CIRCUIT

To compute the four noise parameters related to the input and output ports of a general multiport circuit, we assume that the reflection coefficient S_{pp} of the input port termination (equation (23)) and the reflection coefficient

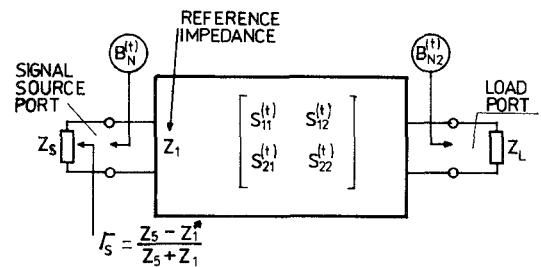


Fig. 3. Outgoing noise waves $B_{N1}^{(t)}$ and $B_{N2}^{(t)}$ at the input and output ports of the overall circuit.

S_{rr} of the output port load (equation (21)) are both zero. We assume also that both these terminations are noise free. Under such assumptions the noise waves at the input and output ports can be computed using (12).

The actual steps carried out by the numerical algorithm are listed below:

- a) The connection scattering matrix \mathbf{W} of the analyzed circuit is built and computed. Diagonal elements $W_{pp} = -S_{pp}$ and $W_{rr} = -S_{rr}$ of \mathbf{W} must be set to zero (p is the signal source port number, r the load impedance port number).
- b) The noise correlation matrices of the individual passive and active circuit elements are found. The noise correlation matrix \mathbf{C} defined by (13) is built and computed. Two diagonal elements of the matrix \mathbf{C} relative to ports belonging to the signal source impedance and to the load impedance are set to zero.
- c) The three elements $(\mathbf{AA}^\dagger)_{pp}$, $(\mathbf{AA}^\dagger)_{rr}$, and $(\mathbf{AA}^\dagger)_{pr}$ (or $(\mathbf{AA}^\dagger)_{rp}$) of the matrix \mathbf{AA}^\dagger are computed using (12).

The correlation matrix of the outgoing noise waves $B_{N1}^{(t)}$ and $B_{N2}^{(t)}$ at the input and output ports of the overall network is given by (see Fig. 3)

$$\begin{aligned} \mathbf{C}^{(t)} &= \begin{bmatrix} C_{11}^{(t)} & C_{12}^{(t)} \\ C_{12}^{(t)} & C_{22}^{(t)} \end{bmatrix} = \begin{bmatrix} \overline{B_{N1}^{(t)} \cdot B_{N1}^{(t)*}} & \overline{B_{N1}^{(t)} \cdot B_{N2}^{(t)*}} \\ \overline{B_{N2}^{(t)} \cdot B_{N1}^{(t)*}} & \overline{B_{N2}^{(t)} \cdot B_{N2}^{(t)*}} \end{bmatrix} \\ &= \begin{bmatrix} \overline{(\mathbf{AA}^\dagger)_{pp}} & \overline{(\mathbf{AA}^\dagger)_{pr}} \\ \overline{(\mathbf{AA}^\dagger)_{pr}^*} & \overline{(\mathbf{AA}^\dagger)_{rr}} \end{bmatrix}. \end{aligned} \quad (24)$$

Once the elements of the noise correlation matrix $\mathbf{C}^{(t)}$ are known, the noise figure F can be determined. The noise figure is given by

$$F = 1 + \frac{C_{11}^{(t)} \left| \frac{\Gamma_s S_{21}^{(t)}}{1 - S_{11}^{(t)} \Gamma_s} \right|^2 + C_{22}^{(t)} + 2 \operatorname{Re} \left\{ C_{12}^{(t)} \frac{S_{21}^{(t)} \Gamma_s}{1 - S_{11}^{(t)} \Gamma_s} \right\}}{k T_0 \Delta f \frac{|S_{21}^{(t)}|^2}{|1 - S_{11}^{(t)} \Gamma_s|^2} (1 - |\Gamma_s|^2)} \quad (25)$$

where $S_{11}^{(t)}$ and $S_{21}^{(t)}$ are the scattering parameters of the overall network, and

$$\Gamma_s = \frac{Z_s - Z_p^*}{Z_s + Z_p} \quad (26)$$

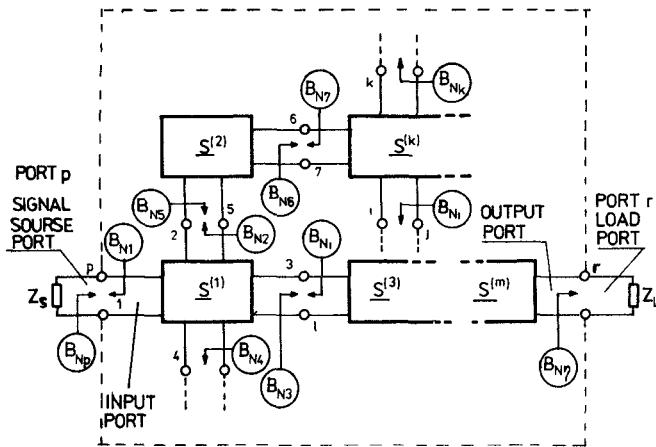


Fig. 4. Equivalent circuit of a multiport network with noiseless elements and noise wave sources at each port.

is the reflection coefficient of the signal source impedance with respect to the input port reference impedance.

Using the $C^{(t)}$ matrix elements, any set of noise parameters of the overall network may be calculated, for example F_{em} , Γ_o , and N :

$$F_{em} = \frac{1}{2} \left[C_{22}^{(t)} \frac{1 - |S_{11}^{(t)}|^2}{|S_{21}^{(t)}|^2} - C_{11}^{(t)} + 2 \operatorname{Re} \left\{ C_{12}^{(t)} \frac{S_{11}^{(t)*}}{S_{21}^{(t)*}} \right\} + N \right] \quad (27)$$

$$\Gamma_o = \frac{2 \left(C_{12}^{(t)*} \frac{1}{S_{21}^{(t)}} - C_{22}^{(t)} \frac{S_{11}^{(t)*}}{|S_{21}^{(t)}|^2} \right)}{C_{22}^{(t)} \frac{1 + |S_{11}^{(t)}|^2}{|S_{21}^{(t)}|^2} + C_{11}^{(t)} - 2 \operatorname{Re} \left\{ C_{12}^{(t)} \frac{S_{11}^{(t)*}}{S_{21}^{(t)*}} \right\} + N} \quad (28)$$

$$N = \left[\left(C_{22}^{(t)} \frac{1 + |S_{11}^{(t)}|^2}{|S_{21}^{(t)}|^2} + C_{11}^{(t)} - 2 \operatorname{Re} \left\{ C_{12}^{(t)} \frac{S_{11}^{(t)*}}{S_{21}^{(t)*}} \right\} \right) \right]^2 - 4 \left| C_{12}^{(t)*} \frac{1}{S_{21}^{(t)}} - C_{22}^{(t)} \frac{S_{11}^{(t)*}}{|S_{21}^{(t)}|^2} \right|^2 \quad (29)$$

This time the noise figure of the overall circuit is given by

$$F = 1 + F_{em} + N \frac{|\Gamma_s - \Gamma_o|^2}{(1 - |\Gamma_s|^2)(1 - |\Gamma_o|^2)}. \quad (30)$$

The overall scattering parameters $S_{11}^{(t)}$ and $S_{21}^{(t)}$ used in (25) and (27)–(29) can be computed from the equation

$$W\mathbf{a} = \mathbf{b}_s \quad (31)$$

where W is the connection scattering matrix given by (10), \mathbf{a} is a vector of incident power waves, and \mathbf{b}_s is a vector of the impressed power waves of the independent sinusoidal signal sources [13]–[16].

Connecting the input port of an analyzed multiport circuit (see Fig. 4) to a matched signal source ($S_{pp} = 0$) with the impressed wave $b_{sp} = 1$ and the output port to a

matched load ($S_{rr} = 0$), we get a case in which the overall scattering parameters $S_{11}^{(t)}$ and $S_{21}^{(t)}$ coincide with the waves a_r and a_t :

$$S_{11}^{(t)} = a_r \Big|_{a_1=1} \quad S_{21}^{(t)} = a_t \Big|_{a_1=1}.$$

The condition $a_1=1$ is imposed by the signal source connected to the input port.

V. CONCLUSION

The noise analysis concept presented in this paper is applicable to multiport circuits with any topology. Therefore it is applicable to most networks occurring in microwave practice. The set of noise parameters which can be calculated by the method includes the noise figure, the correlation matrix of the outgoing noise waves at the input and output ports, or the minimum noise figure, the optimum signal source reflection coefficient, and the parameter N .

REFERENCES

- [1] H. Rothe and W. Dahlke, "Theory of noisy fourpoles," *Proc. IRE*, vol. 44, pp. 811–818, June 1956.
- [2] H. Bauer and H. Rothe, "Der äquivalente Rauschvierpol als Wellenvierpol," *Arch. Elek. Übertragung.*, vol. 10, pp. 241–252, 1956.
- [3] P. Penfield, "Wave representation of amplifier noise," *IRE Trans. Circuit Theory*, vol. CT-9, p. 84, Mar. 1962.
- [4] K. Kurokawa, "Power waves and the scattering matrix," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 194–202, Mar. 1965.
- [5] K. Hartman and M. Strutt, "Changes of the four noise parameters due to general changes of linear two-port circuits," *IEEE Trans. Electron Devices*, vol. ED-20, pp. 874–877, Oct. 1973.
- [6] H. Hillbrand and P. Russer, "An efficient method for computer-aided noise analysis of linear amplifier networks," *IEEE Trans. Circuits Syst.*, vol. CAS-23, pp. 235–238, Apr. 1976.
- [7] S. Nersen, "The effect of feedback on noise figure," *Proc. IEEE*, vol. 63, pp. 540–542, Mar. 1975.
- [8] K. B. Niclas, "The exact noise figure of amplifiers with parallel feedback and lossy matching circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-30, pp. 832–835, May 1982.
- [9] K. B. Niclas and B. A. Tucker, "On noise in distributed amplifiers at microwave frequencies," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-31, pp. 661–668, Aug. 1983.
- [10] C. S. Aitchison, "The intrinsic noise figure of the MESFET distributed amplifiers," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 468–476, June 1985.
- [11] V. Rizzoli and A. Lipparini, "A CAD solution of the generalized problem of noise figure calculation," in *Proc. 1985 IEEE MTT Int. Symp.*, pp. 699–702.
- [12] V. Rizzoli and A. Lipparini, "Computer-aided noise analysis of linear multiport networks of arbitrary topology," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 1507–1512.
- [13] V. A. Monaco and P. Tiberio, "Computer aided analysis of microwave circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 249–263, Mar. 1974.
- [14] F. Bonfatti, V. A. Monaco, and P. Tiberio, "Microwave circuits analysis by sparse-matrix techniques," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 264–269, Mar. 1974.
- [15] J. A. Dobrowolski, "Algorithms and storage scheme in the sparse matrix approach to computer aided analysis of microwave circuits," in *Proc. IEE Conf. CAD of Electronic and Microwave Circuits Syst.*, (Hull, Great Britain), July 12–14, 1977, pp. 122–127.
- [16] J. A. Dobrowolski, *Computer Aided Design of Microwave Circuits*. Warsaw University of Technology Publisher, 1978 (in Polish).
- [17] N. G. Kanaglekar, R. E. McIntosh, and W. E. Bryant, "Wave analysis of noise in interconnected multiport networks," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-35, pp. 112–115, Feb. 1987.

- [18] R. P. Hecken, "Analysis of linear noisy two-ports using scattering waves," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 997-1003, Oct. 1981.
- [19] R. Q. Lane, "The determination of device noise parameters," *Proc. IEEE*, vol. 57, pp. 1401-1402, Aug. 1969.
- [20] W. Wiatr, "A method of estimating noise parameters of linear microwave two-ports," Ph.D. dissertation, University of Technology, Warsaw, Poland, 1980 (in Polish).
- [21] M. W. Pospieszalski, "On the measurement of noise parameters of microwave two-ports," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, pp. 456-458, Apr. 1986.
- [22] J. Lange, "Noise characterization of linear two-ports in terms of invariant parameters," *IEEE J. Solid-State Circuits*, vol. SC-2, pp. 37-40, June 1967.
- [23] H. Bosma, "On the theory of linear noisy systems," *Philips Res. Rep. Suppl.* no. 10, 1967.
- [24] H. A. Haus *et al.*, "Representation of noise in linear two-ports," *Proc. IRE*, vol. 48, pp. 69-74, Jan. 1960.

Janusz A. Dobrowolski was born in Rzeszów, Poland, on May 6, 1942. He received the M.Sc., Ph.D., and habilitation Doctor degrees in electronic engineering from the Warsaw University of Technology, Warsaw, Poland, in 1965, 1973, and 1979, respectively.

Since 1965, he has been with the Institute of Electronics Fundamentals, Warsaw University of Technology, where he is currently Deputy Director for Scientific Affairs. While on leave during the academic years 1974-1975 and 1983-1984, he was a Research Associate in the Department of Electrical Engineering, University of Manitoba, Winnipeg, Man., Canada, where he worked on the development and design of antennas and microwave components for satellite communication systems. His current research interests are in the areas of computer-aided design of microwave circuits and microwave measurements.