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A CAD-Oriented Method for Noise Figure
Computation of Two-Ports with Any

Internal Topology

JANUSZ A. DOBROWOLSKI

.,

~bstract —A method for computer-aided noise analysis and an algorithm

for the noise parameter computation of two-ports with any internal topol-

ogy are discussed. The approach is applicable to circuits which are com-

posed of any number of passive linear multiports and active linear two-port

devices. The noise analysis is based on the scattering matrix description

for circuit elements and wave representation for noise.

I. INTRODUCTION

T HE THEORY of noisy, linear cascaded two-ports is

well established and has provided the basis for opti-

mizing the performance of low-noise amplifiers. This the-

ory has been based on the classical work by Rothe and

Dahlke [1], who use an impedance or admittance represen-

tation of noise parameters. The representation of the noise

of microwave networks in terms of power waves is also

used very effectively [2]–[4]. Transformation formulas for

the four noise parameters given in [5] are useful for noise

analysis of circuits that may be represented by series,

parallel, and cascaded connections of two-ports. The

method for noise analysis proposed in [6] has the same

restrictions. The two-port which is to be analyzed is viewed

as an interconnection of two-ports only.

Expressions are also known for the noise figure of

cascaded structures with series or parallel feedback [7], [8]

and for distributed amplifiers [9], [10]. These relations are

only valid for preselected topologies. They cannot be im-

plemented into general-purpose computer programs for

noise analysis of circuits with any topology.

It is the purpose of this paper to present a computer-

aided noise analysis method for linear two-ports wkh

absolutely general internal topology.

Instead of an admittance matrix and a current descrip-

tion for circuits and noise which are used in the method

described in [11] and [12], a scattering matrix and a wave

representation are presented. At microwave frequencies, a

treatment of noise in terms of waves is more attractive.

The ingoing and outgoing noise waves A, and B, are given
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by

where V, and Ii are the noise voltage and the noise current

flowing into the i th port of a circuit and Z, is the

reference impedance of the port.

Equation (1) is identical to the standard definition of

power waves for sinusoidal signals [4].

In the noise analysis of circuits containing multiports,

one noise wave source is’ placed at each circuit port. These

noise wave sources represent noise generated in each

element (multiport) of the circuit. The method makes it

possible to effectively compute the noise figure and four

noise parameters of the overall circuit. The information

about minimum noise figure and noise-matching condi-

tions is an important advantage of the approach. Thanks

to the connection scattering matrix formalism used for a

circuit description, the noise analysis method presented is

more compatible with CAD software [12] –[16] than the

method described in [17].

II. METHOD OF ANALYSIS

In the analysis, it is assumed that each linear noisy

network may be represented as the interconnection of

lossy passive multiports which introduce only thermal noise

and noisy active two-ports. Each linear element in the

circuit may be represented by its noiseless equivalent hav-

ing the same scattering matrix S as the original network.

As is shown in Fig. 1, noise generated in an element is
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Fig. 1. Wave representation of noise in a mukiport.
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Fig. 2. Constraints imposed by connections between adJacent ports.
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represented by mutually correlated noise wave sources, one

source at each port.

In matrix notation, a set of linear equations which relate

complex amplitudes of noise waves at ports of a circuit

element has the from [18]

~(k) = s(k)/f(k) + Bf) (2)

where S(~) is the scattering matrix of the k th element,
A (k J and B(k) are vectors of incident and reflected noise

waves at its ports, and ll~k) is a vector of mutually

correlated noise wave sources which represent noise gener-

ated in the element. The noise waves from these sources

radiate out of the ports and they do not depend on

incident noise waves A f‘).
Fig. 2 presents a general circuit composed of m elements

(multiports) connected together by their ports.

Considering all m elements of the circuit, we have a set

of linear equations whose matrix form is

where

A=

and

~ (1)

A (2)

A(k)

1
A(m)]

s=

B= SA+BN

B=

s.(l) ()

(J 5“(3

B (1)

B (2)

B(k)

B(W)

. . .

BN =

. . .

0

0 - s(k) o

ro ... 0 ... s(m)

(3)

(4)

(5)

The connections between the m elements impose con-

straints on the vectors A and B which can be represented

as a matrix equation.

B=I_A (6)

where r is the connection matrix. In fact, incident and

reflected noise waves at ports i and j connected together

must satisfy the following relation (see Fig. 2):

where Z, and Z] are the reference impedances of the

connected ports. The above relation defines elements of

the connection matrix r corresponding to a pair of the

connected ports.

It is assumed in the analysis that for all pairs of the

connected ports

z,= z,” . (8)

This means that all port connections in the analyzed

circuit are nonreflecting; that is, a, = bJ and aJ = b,. In

such a case the elements of the connection matrix I’ are all

zero except the 1’s in the entries corresponding to pairs of

adjacent ports.

After elimination of the vector B from (3) and (6) we get

WA= BN (9)

where

w=r–s (lo)

is the connection scattering matrix of the analyzed circuit

[13].

Using (9) we are able to get a correlation matrix of the

incident noise waves in all circuit ports. Given that

A = W- ~B~ (11)

then

AA?= W-lBNBj(W-l)t = W-lC(W-l)T (12)

where the bars indicate the statistical averages and the

daggers the complex conjugate transpose of the vectors

and matrices. In (12)

C = BNB~r (13)

is the correlation matrix of the noise wave sources repre-

senting noise generated in all circuit elements.

Because the noise wave sources B}) of an (ith) element

are uncorrelated with those of any other circuit element,

the correlation matrix c is a block diagonal matrix of the

form

C = BNB~

[

~(l) () . . . . . . . . . ()

o C(2) .

——
c(k)

,. 0

LO . . . . . . . . . oc(~)

(14)

in which C@), C(z), -.., C(m) are correlation matrices of the

noise wave sources of individual circuit elements.
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A. Active Two-Ports

Noise generated in an active two-port is represented by

the complex waves 11~1 and l?~z

ports. Their 2 x 2 correlation matrix

radiating from both

may be calculated from the following relation:

!
[Fem+(N-Fem)lrol’]ls,l]’

‘TAf +2N Re(I’oSll) + N– F,~(l – lr.1)
c= 1– p#

[FA+(N- amol’lxw,,+ ~ro~’1

where

and

F=em

rO =

RN =

GO =

s*, =

[F,~+(N-Fe~)&12]S11S; +Nr$S; (1,)

[Fe~+(N-F,~)lr012]lS2112 1

N=4RN. G0 (17)

minimum excess noise figure,

Re 1’0+ j Im 170,optimum reflection coeffi-

cient of the signal source,

noise resistance,

real part of the optimum source admittance,

(i, j =1,2) scattering parameters of a two-port.

,~, rO = Re rO + j Im rO, and N are a set of noiseF

parameters which must be obtained through measurements

[19] -[21]. The correlation matrix C may also be expressed

by any other set of active two-port noise parameters, for

example T~, RO, XO, RN or TM, GO,BO,G~ [6], [22].

B. Passive Multiports

Lossy passive multiports generate only thermal noise.

It is represented again by the complex waves B~l,

B N’., ” “ o, BN., where n is the number of ports in a multi-

port. The n x n correlation matrix C of these noise sources

is given by [23]

c = [BN,BJJ], i,j’=1,2,. ... n

=kTAf(I– SS+)

where

k Boltzmann’s constant,

T physical temperature of the multiport,

1 identity matrix,

S scattering matrix of the multiport.

(18)

The quantity (I – SS t ) k called the noise distribution

matrix because it describes how the thermal noise power

generated in the multiport is distributed over its ports.

It should be mentioned here that, in general, passive

elements in a microwave circuit can have different physical

tem~eratures.

HI. AN ALGORITHM FOR THE NOISE FIGURE

COMPUTATION OF A GENERAL MULTIPORT CIRCUIT

To compute the noise figure, we will assume that
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the

output port load impedance is noise free. Under such a,

condition, the noise figure of the circuit at frequency f is

given by [24]
P

F=l+~ (19)
‘NS

where

PNin, (available) active noise power at the output port

of the circuit arising from the noise sources act-

ing within the circuit,

~S (available) active noise power at the output portP

of the circuit arising from the equivalent thermal

noise source of the input port termination.

If r is the number of the load impedance port of the

analyzed circuit, then the active noise power at the output

port is

PN= (AqJ1- prry) (20)

where (AA t))s the r th diagonal element of the correla-

tion matrix Alt,

S =ZL– Z:
rr ZL+ z,

(21)

is the reflection coefficient of the output port load, Z~ is

the load impedance, and .Zr is the reference impedance of

the load impedance port. Noise powers PNi~~ and PNs can

therefore be computed using the simple matrix multiplica-

tions described by (12).

The following steps carried out by the numerical algo-

rithm are as follows:

a)

b)

The connection scattering matrix W of the analyzed

circuit it built and computed.

The noise correlation matrices of the individual

passive and active circuit elements are found. The

noise correlation matrix C defined by (13) is built

and computed. Two diagonal elements of C relative

to ports belonging to the signal source impedance

and to the load impedance are set to zero.
P r“

c(l)

@2) ;

C=p . . . . . . . . . ..”.0. :
“ c(k) :

. .

r . . . . . . . . . . . . . . . . . . . . .“o
“c(’”)

P: signal generator port number

rl load impedance port number.

Both zeros represent no noise power generated by

signal source and load impedances.,



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 1, JANUARY 198918

c)

d)

Relative to the load impedance port diagonal ele-

ment of the matrix AAt is computed using (12). A

value of this element multiplied by (1 – IS,, 12, equals

PNint.

The noise correlation matrix C defined by (14) is

built and computed once again, this time for ‘the

case where noise in the circuit originates from the

equivalent thermal noise source of the input port

termination only. It means that all elements of the

matrix C must be equal to zero, except an element

corresponding to the input port termination. Ac-

cording to (18) this element is

c,, = W(l- 1s,,1’) (22)

where

s =-%–’+7
PP z,+ Zp

(23)

is the reflection coefficient of the input port termination

(signal source port). Z, is the impedance

of the input port termination (signal source impedance),

and ZP is the reference impedance of the signal source

port:

C=p

P

0;
o. :

“.. . . . . . . . . c
PP

“.

o
“.

o
0.

p: signal source port number.

e) Relative to the load impedance port diagonal ele-

ment of the matrix AA f is computed using (12). This

time the value of this element multiplied by (1 –

1S,,12) equals P~~.

f) The noise figure F is found from (19) using results

obtained in steps c and e.

Note that the matrix W in (12) is the coimection scatter-

ing matrix of the analyzed circuit, so that a conventional

circuit analysis may be carried out together with the noise

figure calculation. This allows a simultaneous optimization

of art absolutely general amplifier topology with respect to

both noise figure and any of the conventional circuit

functions. The inverse matrices W-1 and ( W– 1)~ of the
connection scattering matrix W can be computed very

effectively using sparse matrix technique [14], [15].

IV. AN ALGORKTHM FOR COMPUTATION OF THE

FOUR NOISE PAWETERS OF A GENERAL

MULTIPORT CIRCUIT

To compute the four noise parameters related to the

input and output ports of a general multiport circuit, we

assume that the reflection coefficient Spp of the input port

termination (equation (23)) and the reflection coefficient

REFERENCE
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Fig. 3. Outgoing noise waves B#~ arid B#] at the input and output
ports of the overall circuit.

S,, of the output port load (equation (21)) are both zero.

We assume also that both these terminations are noise

free. Under such assumptions the noise waves at the input

and output ports can be computed using (12).

The actual steps carried out by the numerical algorithm

are listed below:

a)

b)

c)

The connection scattering matrix W of the analyzed

circuit is built and computed. Diagonal elements

WPP= – Spp and W,, = – S,, of W must be set to

zero (p is the signal source port number, r the load

impedance port number).

The noise correlation matrices of the ~individual

passive and active circuit elements are found. The

noise correlation matrix C defined by (13) is built

and computed. Two diagonal elements of the matrix

C relative to ports belonging to the signal source

impedance and to the load impedance are set to

zero.

The three elements (AIf)pp, (AA*) ;,, and (AA~)p,

(or (AAt),p) of the matrix AA? are computed using

(12).

The correlation matrix of the outgoing noise waves B#~

and B# at the input and output ports of the overall

network is given by (see Fig. 3)

Once the elements of the noise correlation matrix C(t) are

known, the noise figure F can be determined. The noise

figure is given by

(25)

where S~[) and S~~) are the scattering parameters of the

overall network, and

(26)
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Fig. 4. Equivalent circuit of a muhiport network with noiseless ele-

ments and noise wave sources at each port.

is the reflection coefficient of the signal source impedance

with respect to the input port reference impedance.

Using the C(t) matrix elements, any set of noise parame-

ters of the overall network maybe calculated, for example

Fern, I’o, and N:

1

[

1 – Isf;y

‘em = z Ci;) Jsjpl’ -c’’) +2Re{c’’)%J+Nl

(27)

This time the noise figure of the overall circuit is given by

Ir, - ro12

‘=l+F’m+N(l- lr,12)(l-lro12)”
(30)

The overall scattering parameters S~~) and S& used in

(25) and (27)-(29) can be computed from the equation

Wa = b, (31)

where W is the connection scattering matrix given by (10),

a is a vector of incident power waves, and b, is a vector of

the impressed power waves of the independent sinusoidal

signal sources [13]–[16].

Connecting the input port of an analyzed multiport

circuit (see Fig. 4) to a matched signal source ( SPP= O)

with the impressed wave b,p =1 and the output port to a

19

matched load (S,, = O), we get a case in which the overall

scattering parameters S~~j and Sj~) coincide with the waves

ar and ap:

The condition al= 1 is imposed by the signal source

connected to the input port.

V. CONCLUSION

The noise analysis concept presented in this paper is

applicable to multiport circuits with any topology. There-

fore it is applicable to most networks occurring in mi-

crowave practice. The set of noise parameters which can be

calculated by the method includes the noise figure, the

correlation matrix of the outgoing noise waves at the input

and output ports, or the minimum noise figure, the opti-

mum signal source reflection coefficient, and the parame-

ter N.
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